Большинство нынешних автофокусных аппаратов рассчитаны на работу от литиевых элементов питания, из которых наиболее распостранены следующие типоразмеры: 2CR5 (DL245), CR123a (DL123a), CR-P2 (DL223a), CR2. Исключение составляют лишь некоторые аппараты явно профессионального предназначения - Nikon F90X и Nikon F100 (рассчитанные на примение в качестве основного источника питания батареек LR6), а также Nikon F5 и Canon`ы профессиональной серии (EOS1n/EOS 1v/EOS 3 с бустером и EOS1n RS), у которых основным источником электропитания служит специальная аккумуляторная батарея.
И это не удивительно - на сегодняшний день именно литиевые элементы питания зарекомендовали себя как наиболее надёжный, самый энергоемкий и всепогодный источник энергии, к тому же имеющий самый продолжительный срок хранения и использования.
Однако литиевые батарейки являются и самым дорогим источником питания. Поэтому понятно, что многих владельцев фотоаппаратов волнует вопрос уменьшения расходов - ведь комплекта батареек в среднем хватает не более чем на 20-30 36-кадровых плёнок. Цифра эта, понятно, весьма приблизительна, и зависит от большого количества факторов, которые мы ниже постараемся рассмотреть более подробно.
Вспомните мысль, чаще всего приходящую в голову при покупке новой батарейки - это, как правило, мысль о том, "…сколько же плёнок можно было бы купить на эти же деньги!". И, если с необходимостью периодической покупки элементов питания сталкиваться всё равно (пусть чаще или реже) прийдётся, то возможность сберечь часть денег, уходящих на это - вполне реальна, тем более что затраты на питание вполне можно уменьшить до вполне приемлемого уровня - не более 5-10 процентов от стоимости отснятой при этом плёнки.
Путей уменьшения расходов денег на "энергоносители" фотоаппаратов, как правило, два. Первый (главный) - уменьшение энергопотребления фотоаппарата за счёт исключения непроизводительных затрат энергии. Второй - применение альтернативных (более дешевых) источников питания. Конечно, оба эти способа можно и нужно использовать вместе, когда для этого предоставляется возможность. В нашей статье мы постараемся подробно рассмотреть оба этих пути.
"Фирменная" информация о токах, потребляемых фотоаппаратом в различных режимах работы - это информация для служебного пользования. Поэтому для выявления наиболее злостных пожирателей электроэнергии нам пришлось самостоятельно провести замер энергопотребления фотоаппаратов разных моделей. Результаты наших измерений могут совпадать или не совпадать с данными производителей , поэтому мы не станем публиковать эти результаты в виде таблиц с точными цифрами.
Несмотря на некоторый разброс этих величин для разных аппаратов, общие тенденции потребления энергии у большинства фотоаппаратов в среднем мало отличается друг от друга. На наш взгляд, это вполне объяснимо. Технологический уровень встроенной в аппарат электроники достаточно близок для большинства конструкций, представляемых на рынке ведущими производителями фототехники.
Несущественные же различия в общей картине энергопотребления разных аппаратов скорее объясняются различиями в деталях исполнения соответствующих узлов, вызванными стремлением фирм использовать патентно-чистые технологические решения, а иногда - просто разницей в функциях или характеристиках аппаратов.
А вот явно прожорливым или явно экономичным аппарат становится в первую очередь благодаря рукам его владельца. Поэтому статью нашу мы решили посвятить не ранжированию аппаратов разных моделей по признаку их экономичности, а определению общих принципов, позволяющих сделать более экономичной эксплуатацию любого фотоаппарата. Значит для нас сами точные цифры энергопотребления конкретных аппаратов не столь интересны, сколь интересна общая картина энергозатрат "обычного" автофокусного аппарата, тем более что вывести такой вот "усреднённый" портрет большой трудности не составило.
Результаты тестов, в которых было детально измерено потребление электроэнергии аппаратами Canon EOS 50e, Canon EOS 500n, Minolta Dynax 800si, 600si, 500si Super, позволяют нам сделать следующие выводы.
Чемпионом по потребляемой мощности является встроенная в аппарат вспышка - цикл заряда её накопительного конденсатора длится 2-3 секунды у большей части аппаратов, а у моделей со встроенной вспышкой увеличенной мощности (Canon EOS 5, Minolta Dynax 800si) время заряда увеличивается до 5-6 секунд. Ток, потребляемый от источника питания при этом, достигает величины 1.5A.
Причём совершенно необязательно, чтобы вспышкой пользовались - ведь энергия тратится уже на стадии подготовки вспышки к работе. И, если вспышкой не пользоваться, это вдвойне обидно - энергия, накопленная в конденсаторе вспышки, просто пропадает даром, без пользы. Общая рекомендация - пользоваться встроенной вспышкой только при необходимости, всё равно мощность её невелика, расположение - провоцирует достаточно частое появление "красных глаз" на снимках, да и бленды (а иногда даже и оправы!) многих объективов затеняют нижнюю часть кадра от её света.
Автор, конечно, далёк от мысли, что встроенная вспышка - прибор исключительно вредный, и что пользы от неё совсем никакой. Но, в целях экономии электроэнергии, разумное ограничение использования встроенной вспышки (которая в большинстве случаев применения никак не заменяет навесную вспышку) - первое правило. Активация встроенной вспышки в современных аппаратах организована по-разному, поэтому в разных аппаратах методы исключения ненужных затрат энергии на заряд её конденсатора будут отличаться.
Полностью ручная система (например Minolta Dynax 600si, 800si) - самая управляемая. Вспышка поднимается только вручную, и до того, как она будет переведена в рабочее положение, аппарат даже не подозревает о наличии встроенной в его конструкцию вспышки. Чтобы в этой системе начался процесс заряда встроенной вспышки, последнюю необходимо выдвинуть в рабочее положение и поджать кнопку спуска (при этом сразу будет слышен характерный свист преобразователя напряжения). Понятно, что самопроизвольно (без желания фотографа) процесс зарядки встроенной вспышки не начнётся. Поэтому, при такой системе всё полностью зависит от сознательного желания (или нежелания) фотографа ею воспользоваться.
Во многих ныне выпускаемых аппаратах принята другая система активирования встроенной вспышки. В этом случае перевод вспышки в рабочее положение происходит полуавтоматически или автоматически (например - большинство аппаратов Canon EOS). В некоторых режимах экспонирования (как правило - в "сюжетных" режимах или в "зелёной зоне") этот вариант активирования встроенной вспышки может быть "усугублен" предварительной зарядкой накопительного конденсатора сразу же после переведения аппарата из положения "lock".
Пути борьбы с излишним расходом энергии в этом случае могут быть следующими - не стоит излишне увлекаться использованием программного режима (равно как и "сюжетных" программ), при которых происходит автоматическая активация встроенной вспышки, а также постараться отказаться от излишне частого включения-выключения аппарата.
О "выключателе" фотоаппарата (далее мы поясним, почему это слово взято в кавычки) стоит упомянуть более подробно. У многих из нас наверняка существует устойчивый стереотип, что аппарат в перерывах между съёмками необходимо выключать, переводя диск режимов (или отдельный выключатель) в положение "lock" - так он будет потреблять меньше энергии. Однако это действие, будучи совершенно логичным на первый взгляд, на самом деле не только не уменьшает, а часто даже значительно увеличивает расход энергии.
Чтобы понять, почему так происходит, рассмотрим некоторые особенности "анатомии" нашего "среднего" фотоаппарата. Всеми его действиями руководит довольно мощный и быстродействующий компьютер. И компьютер этот, несмотря на самые современные технологии, задействованные при его создании, при работе потребляет довольно много энергии (ток - примерно 90-110 мA).
Для того, чтобы уменьшить потребление энергии источников питания в паузах между съёмками, компьютер этот с незначительной задержкой (обычно - порядка 8 секунд) переходит в режим пониженного энергопотребления. В этом режиме потребляемая аппаратом мощность падает в тысячи раз, но компьютер теряет возможность проводить какие-либо вычисления и руководить активными действиями аппарата, сохраняя лишь функции памяти, индикации информации на внешнем дисплее и опроса органов управления.
Впрочем, пользователю это не создаёт никаких неудобств, ведь при любых действиях с аппаратом (например - манипуляциях с органами управления) компьютер мгновенно возвращается в активный режим работы, и пребывает в этом режиме до тех пор, пока надобность в активных действиях аппарата не отпадёт. А тогда, с небольшой задержкой, компьютер опять "заснёт".
Для большинства аппаратов ток, потребляемый в состоянии покоя, весьма незначителен (от 20-25 до 40-45 микроампер) и может даже быть одинаковым в обоих положениях этого переключателя, основной смысл которого - в дословном переводе с английского языка термина "lock" (запирание, блокировка). То есть аппарат всё равно продолжает "жить своей жизнью", но в положении "lock" ему запрещается реагировать действиями (включением фокусировки, экспонометра и так далее) на нажатие соответствующих кнопок.
Представить более наглядно величину тока, потребляемого аппаратом при бездействии, поможет такая цифра - свежая батарея будет разряжена таким током примерно через 3-5 лет. При включении же (а точнее говоря - при разблокировке) аппарат обязательно проводит цикл самотестирования, проверяет работоспособность батарейки и переводит встроенный компьютер аппарата в состояние "боевой готовности".
Некоторые аппараты кроме этого могут делать и другие действия: заряжать встроенную вспышку, "передёргивать" объективом, проверяя положение "бесконечности", могут включать подсветку дисплеев, в общем - производить кучу ненужных на данный момент, но достаточно энергоемких действий, пусть даже и незаметных на первый взгляд. Поэтому мы вправе рекомендовать не переводить выключатель в положение "lock" излишне часто, а пользоваться этой функцией лишь в случае длительных перерывов в пользовании аппаратом.
Также заметим, что без необходимости не стоит нажимать на кнопки и крутить диски управления - результаты "обследования" аппаратов показали, что аппарат может реагировать на операции с некоторыми органами управления импульсами потребляемого тока (70-100 mA, длительность 0.2-0.5 сек.) даже находясь в заблокированном режиме, не говоря уже о разблокированном состоянии, в котором любые операции с органами управления заставляют компьютер аппарата "проснуться", и активно проработать минимум 8 секунд.
Автор: Сергей Дубильер